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Presented at the 46th Shock and Vibration Symposium, San Diego, October 1975,

Finite Element Sclution of Fluid-Structure
Interaction Problems

Erwin A. Schroeder and Melvyn S. Marcus

Computation and Mathematics Department
David W. Taylor Naval Ship RED Center
Bethesda, Maryland 20084

ABSTRACT

A finite element method for computing natural frequencies of a
submerged structure is implemented using a structural analysis program to
solve a sample problem. In this method, the structure and the surrounding
fluid are represented by finite elements. Finite element soiutions of the
sample problem compare well with an analytic solution for both cousistent
and lumped formulations of the fluid-structure interaction effects.

[
INTRODUCTION

The method of Zienkiewicz and Newton1 for solving fluid-structure
interaction problems, one of several developed to address such problems,
uses finite elements to represent both the structure and the fluid; in the
flui’ the unknown is the pressure field. We used the two-dimensional problem
of finding natural frequencies of a ring surrounded by fluid to explore the
characteristics of this method and the practicality of using a finite element
structural analysis program to apply it. Althovrgi this paper deals with only
two-dimensional problems, the finite eleme.t method is applicable to three-
dimensional problems involving generally shaped structures, and eventually we
intend to explore such applications and transient problems as well.

In this investigation we considered the amount of fluid required to
obtain adequate modeling, the effect of element size on accuracy, and the

l Zienkiewicz, 0.C. and Newton, R.L., Coupled Vibrations of a Structure
Submerged in a Compressible Fluid, Proc. Int. Symp. on Finite Element
Techniques, Stuttgart, 1969.
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ways in which the method handles various vibration modes. We also compared
a lumped representation of the fluid-stiucture interaction with a consistent
Tepresentation.

An extension of the method of Zienkiewicz and Nnwton was used by
Hunt et al2 to determine the acoustic radiation from a piezoelectric cylinder.
Everstine et al3 reviewed this and other methods for fluid-structure inter-
action problems and point out advantages and disadvantages among them,

A FINITE ELEMENT REPRESENTATION OF A VIBRATING FLUID-STRUCTURE SYSTEM

The method of Zienkiewicz and Newton represents both the structure and
the fluid with finite elements. The finite elements determine displacements
in the structure and a pressure field in the fluid. These representations
produce one system of linear algebraic equations for the structure and a
second for the fluid. The two systems are coupled by terms resulting from
dynamic interactions at the fluid-structure boundary. Solving an algebraic
eigenvalue problem yields the natural frequencies of the fluid-structure
system.

The system of linear algebraic equations that represents the structure
is written in the form of a matrix equation

M§ + Ké = f (1)

where
§ and 8 are vectors of displacements and accelerations at grid
points in the structure,
M and K are mass and stifiness matrices for the structure, and
f is a vector of generalized external forces acting on the
structure,
Each component fi of the vector f of generalized forces corresponds
to a displacement §. at a grid point a in the structure. If the point a is
on the surface Ss of the structure that is acted on by the fluid pressure p,

2 Hunt, J.T., Knittel, M.R., and Barach, D., Finite Element Approach to
Acoustic Radiation from Elastic Structures, J. Acoust. Soc. Am., pp. 269-280,
Vol. 55, 1974,

3

Everstine, G.C., Schroeder, E.A., and Marcus, M.S., The Dynamic Analysis of
Submerged Structures, NASTRAN: User's Experiences, Colloquium held at Langley
Research Center, Hampton, Virginia, September 1975.
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the generalized force component is given by

fi-é N; n; p dS 2)

C

where N. is the shape function corresponding to §;» and n; is the
component in the direction of the displacement & of the unit vector
normal to S, and directed out of the fluid region. The fluid pressure is
expressed as a linear combination of shape functions F, defined in the
region containing fluid

p=§w.F. (3)

in which each ¢ j represents the pressure at a grid point in the fluid. With
inner product notation used for conciseness, the component of generalized
force maybe written in the form

v, < NI, F.> @)

where
N. = n.N. (3)
Equation (4) is written in matrix form using the 'boundary matrix ' B,
£ = By (6)

where ¢ is the vector of fluid pressures at grid points in the fluid, and
the consistent formulation of the boundary matrix is

B = [<N£’ FJ>] (7)

An alternative to the consistent formulation of the boundary matrix is
the lumped formulation. To evaluate the integral in Equation (2) for the
lumped formulation, the fluid pressure is assumed to be constant over the
element faces " lying on the fluid-structure boundary that contain the grid

‘point a. If the constant value is taken to be the pressure at the point a,

Equation (2Z) becomes

£, = winiszidS
®k

N S
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The sum is taken over all element faces e, connected to the grid point a. v
When the configuration of the element faces and the shape functions are 3,
given, this sum can be computed. For the lumped formulation, the boindary <
matrix is diagonal: ?
B = diag[n, : / N, ds] (8)
°k

Using the boundary matrix B in either the consistent or the lumped
formulation, we substitute Equation (6) into Equation (1). Then the finite
element matrix equation for the structure including the effects of fluid
pressure on the fluid-structure boundary is

M§ + K§ - By = 0 (9)

A similar matrix equation is needed to represent the pressure field
in the fluid. To obtain a finite element matrix equation for the fluid, the
fluid is assumed to be an acoustic medium; that is, it has a pressure field
p defined by the wave equation

Lp-vp-o0 (10)

where c is the speed of sound in the fluid. The pressure field is expanded in
terms of shape functions (Equation (2)), and the Galerkin method is applied
to the wave equation (Reference 1) to get the following equation:

Q.';;+H¢-{f1=i_32d5}=o (11)
S an
=71 - '
where Q= ;7'<Fi’ Fj> ] and H = [ <VE,, VFj> ] .

The boundary term appears in the il gquation of the system, Equation (11),
only if ¥y is the pressure at a grid point on the boundary of the fluid region.
The integral in the boundary term is the sum of integrals contributed by
various sections of the fluid region boundary. Equation (11) will be the
requirad matrix equation for the fluid after the form of the boundary term

is converted to a matrix multiplied by the vector §.

e e s i e B = = e



' The contribution of the fluid-structure boundary to this boundary

term is due to the effect of the structure's motion on the fluid pressure.
On the fluid-structure boundary, the boundary condition is

! 3‘? = Pg 8.

& an n

where n is the unit vector normal to the boundary, 4. is the normal component

of the boundary's acceleration, and p £ is the fluid'S density. With the

shape functions Ni {Equation (5)) which incorporate components of n, the

acceleration of the structure's boundary can be expressed by

Gﬁ = f Ni Gi

Therefore the contribution of the fluid-structure boundary to the boundary

term is

o L § N, Fy> o Bl § (12)

;1\1 . The remaining contributions to the boundary term in Equation (11), due

' to boundaries of the fluid region other than the fluid-structure boundary,

are zero as is next shown. The finite element method used here represents

with finite elements only a finite portion of a fluid that extends to infinity

.. and all significant changes in the fluid region are assumed to occur within

this finite region. This assumption is reflected by setting either the

” pressure or the normal derivative of the pressure equal to zero on the ocuter

- boundary of the fluid region. (The method as presented here makes no

provisions for radiation from the outer boundary.) On the sections of the

fluid boundary formed by a plane of symmetry, the normal derivative ap/an

equals zero; on the sections bourded by a plane of anti-symmetry the pressure p

equals zero. Therefore, on these boundaries either ap/an = 0 and the boundary

term is zero, or ¥y is constrained to equal zero. Constraining Vi to be

zero on the boundary has the effect of removing the ith equation from

Equation (11). Thus on these boundaries the contribution of the boundary term
is zero.
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From the preceding remark and from Equation (12) the fluid finite
element matrix equation, which includes effects of motion of the structure
on the fluid pressure, is

Q§&+H¢+prTls‘=o (13)

E

As stated before, the boundary matrix may be computed by either the consistent
or lumped formulation.

Finally, combining Equations (9) and (13) gives the matrix finite
element equation for the fluid-structure system

5 K -B 5

. + = 0

v 0 H v

1f a sinusoidal time dependence with frequency « is assumed, so that
2

M 0

DfBT Q

& = - w*6 and ; = - wzw, the preceding matrix equation becomes the matrix

eigenvalue problem:

det =0 (13

S ™ 0 K -B‘
w _

T

ofB Q 0 H

The roots w of this equation are the natural frequencies of the fluid-structure
system.

To set up and solve this eigenvalue problem, we used the digital computer
program NASTRAN. NASTRAN can be manipulated to compute the submatrices,
assemble the combined problem, and solve for the natural frequencies.

., 4 MODELING FLUID-STRUCTURE SYSTEMS USING STRUCTURAL FINITE ELEMENTS :

This finite element method for representing vibrations of fluid-structure
systems uses standard structural finite elements to represent the submerped
structure and adapted structural elements to represent the surrounding fluid.
Although the simple problem used here represents a two-dimensional system, a
; similar method can be applied to three-dimensional systems.

/ % In two dimensions, the fluid is represented by elastic membrane elements
in which one component of displacement is identified with the fluid pressure,

o - gy So——
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the other com.ient is constrained to equal zero, and the material parameters
are chosen ‘o that the resulting pressure field satisfies the wave equation.
To compute the entries in a consistent boundary matrix, it is convenient to
uvse modified extensional rods connected betwzen grid points on the fluid-
structure boundary, The entries in a lumped boundary matrix are precomputed
and entered directly.

The finite element representation of the structure is formed by the usua)
methods and is not elaborated upon here. This representation of the structure
produces the matrices M and K for Equation (14).

The finite element representation of the fluid region is tormed by
analog using elastic membrane elements. For an acoustic medium, the two:
dimensional pressure fieid p (force/unit length) satisfies the wave equation

2 2 2
12p.3p. 3Py (18)
R at§> ;;g 3;9 o

The displacements of the elastic membrane elements are u and v in the x and
y directions. The differential equations for planar motions of the memhrane
are determined by the two-dimensional elastic modulus matrix for anisutropic
material

G G

1 %2 Y3
Gn = | Sa1 G2 Gyz
Gy Ggp  Gsg ?

The anisotropic matrix is used for its flexibility in choosing material
parameters. In general, if the orientation of a finite element is such that the
element forms an angle & with the anisotropic material axis, the elastic

modulus matrix for the element is obtained by the transformation ‘

T .
Ge U (:mU

where
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For the consistent formulation, the boundary matrix (see Equation (7})
B = [N, F;»]

represents interactions at the fluid-structure boundary. We will consider

the contribution to B from a fluid-structure boundary segment between grid
points a and b. Let 8 ax and éay be the displacemonts in the x and y directions
and Py and P, be the pressures at grid peints a and b. The submatrix of B

that couples these displacements with these pressures is

|-nx<Nax ? r:a> nx<Na.x’ Fb>
[ny<Nay' Fa> ny<Nay' Fb>

In these terms, the integration is restricted to the segment between a and b.

A similar matrix couples &, and éby with P, and Py Since the entries in

these netrices are similaert(o entries in the mass matrix of an extensional
rod counecting a and b, a minor modification of an extensional rod element will
produce these entries for the boundary matrix B in Equation (14).

To illustrate the computation of entries in the boundary matrix for the
lumped formulation, we used a typical case in which two segments of a two-
dimensional fluid-structure boundary join at the grid point b, as shown in

Figure 1.
) Sov

FLUID
"EGION Bbx
STRUCTURE

Figure 1 — A Typical Section of a Fluid
Structure Boundary

13




For the lumped formulation, the fluid pressure on the surface segments
connected to the grid point b is taken to equal the pressure Py at the grid
= point. Also the unit vector n normal to the fluid-structure boundary at b
: is taken to be the unit vector whose direction is midway between the normal
i vectors on either side of b. Then the generalized force applied to b in the
direction of Spx is approximated by (see Equation (2))

(o
Pyl [ Npxds
a

where n_ is the component of n in the direction 8> and N is the shape
function corresponding to Spx Recall that in the two-dimensional case p
has dimensions: force/unit length. If the average length of the segnents
from a to b and from b to ¢ is L, this approximation uecomes

pr cos v,

where Yy is the angle between n and the direction of abx' Simjlarly, the
generalized force applied to b in the direction of 8,x 1S approximated by

pr cos yy
Therefore, the contribution to the boundary matrix that couples Gbx and Gby
with P, is
{ L cos Yy L cos Yy ] (16)

These numbers are precomputed for each fluid-structure boundary grid point
and entered directly into the fluid-structure matrix equation.

MODELING FLUID-STRUCTURE SYSTEMS USING A STRUCTURAL ANALYSIS PROGRAM

A general purpose finite element structural analysis computer program
can be used to model the structure with the usual structural elements and the
surrounding fluid with adapted membrane finite elements. The input data which
describe the material properties, coordinate directions, and degrees of freedom
associated with the membrane element set are tailored to the fluid analogy.




For the consistent formulation, a third set of finite elements (boundary
elements) is introduced at the fluid-structure interface. A schematic
representation of a section of the fluid-structure boundary is shown in
Figure 2.

In implementing the consistent formulation, an option to compute
the fluid-structure coupling matrix B is added (through minor program
modification) to the subroutine which normally computes the consistent mass
matrix for the boundary finite elements.

Thus, from the configuration of structural, fluid, and boundary elements,
the following block diagonal composite mass and stiffness matrices are
formed:

M K

Q H

Then, options typically available in finite element computer programs with
matrix interpretive capabilities are used to interrupt the normal flow of the
standard eigenvalue analysis to partition, reduce, and rearrange the composite
matrices to form the matrices required for Equation (14). (The stiffness
matrix D associated with the boundary elements is discarded.) Then the
normal flow of the eigenvalue analysis is resumed.

In implementing the lumped version, the coupling temms L cos Tx and
L cos Ty (as derived for Equation (16)) are precomputed and inserted in the
stiffness matrix for the fluid-structure system in the column corresponding
to the pressure variable of the fluid grid point bfi’ and in rows corresponding
to the structural displacements in the x- and y-coordinate directions,
respectively, of the structural grid point bs-' (The spatial grid point b is
represented as bSi and bfi within the sets of structural and fluid grid points,
respectively, which lie at the fluid-structure boundary.) Similarly, the
terms -pe « L cos v, and -p¢ - L cos Ty are precomputed and inserted in the
mass matrix for the fluid-structure system in the row corresponding to the
pressure variable of the fluid grid point bfi, and in columns correspending
to the structural displacements in the x- and y-coordinate directions,
respectively, of the structural grid point bg;- This coupling condition may
be implemented directly through the input data to finite element structural
analysis programs such as NASTRAN.

11




Figure 2 — Schematic Representation of a Section of the Fluid-Structure Boundary
s;t structural elements, b.: houndary etements, [;: fluid elements

Grid points 21, 602, 802; 31, 603, 803; etc., have the same spatial coordinates. The boundary elements
hi are present for the consistent version only.
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COMPARISON OF FINITE ELEMENT RESULTS WITH ANALYTIC SOLUTION
FOR A SAMPLE PROBLEM

To study the effectiveness of the finite element pressure formulation,
the two-dimensional vibrations of a ring surrounded by a compressible fluid
were computed using the structural analysis computer program NASTRAN, The
results of both consistent and lumped formulations were compared with an
analytic solution.? The steel ring, 25.4 cm in radius and 0.635 cm thick
(and of unit depth),vibrates in water.

The finite element mesh consists of (Na + 1)x(Nr+ 1) spatial grid points
which are determined by the intersection of (Nr+ 1) concentric circles with
(Ne +1) lines radiating at Ne equal intervals of the cylindri.al coordinate 6.
The ring, which is represented by the innermost circle, is modeled by Ne bar
elements, the fluid by (Ne X Nr) quadrilateral membrane elements. For the
consistent formulation only, Ne rod elements are added to the model at the
fluid-structure boundary. To optimize numerical accuracy, the aspect ratio
(ratio of longest to shortest side) of the fluid elements was kept as near
unity as possible. Because of its symmetry, the problem may be modeled using
only the first quadrant. A mesh with Ne = 8§ and Nr = 6§ is shown in Figure 3.

The finite element frequencies obtained for several even modes and the
corresponding analytic values are compared in Table 1. Computer generated
plots showing deformation patterns (mode shapes) of the structure and contour
lines of constant pressure in the scalar fluid pressure field were obtained
using NASTRAN plotting options. These plots resulted from solutions obtained
using real eigenvalue analysis. Figure 4 shows plots obtained with the
consistent formulation for the case Ne = §, Nr = 6, and the boundary condition
p = 0 applied at an outer radius of 82.8 cm. For each of the four plots
corresponding to modes 0, 2, 4, and 6, the mode shapes appear in the lower
left corners, underlayered by the undeformed ring. To the right are contour
plots showing lines of constant pressure corresponding to eleven equally
spaced values of pressure ranging from the minimum (label 1) to the maximumm
(l1abel 11) value in the pressure field solution.

4 Schroeder, E.A. and Marcus, M.S., Natural Frequencies of a Submerged Ring,
Computation and Mathematics Departmental Report (MD-27-74, David W. Taylor Naval
Ship Research and Development Center (1974).
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Figure 3 — Finite Element Mesh for Sample Problem -
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TABLE 1 - NATURAL FREQUENCIES OF THE RING
(Radians per second)

Modes
Analytic Results 0 2 4 6
no fiuid, vacuum at 25.4 cm ) 392.0 2126 5044
finite fluid, vacuum at 55. 0680 231.2 1433 3725
finite fluid, vacuum at 68.. . ; 5389 227.7 1432 3724
finite fluid, vacuum at 82.8 cm 4364 226.1 1432 3724
infinite fluid, no incoming 18191 224.7 1432 3724
waves
FINITE ELEMENT RESULTS (Vacuum at Quter Radius)
g i N N Outer Radius FE Modes
3 ;| T (cm) Formulation 0 2 4 6
'; 8 0 25.4 consistent 20277 393.9 2137 5074
3 8 | 4 §5.9 consistent 6642 240.5 1563 4221
8 5 68.1 consistent 5353 237.0 1562 4221
8 6 82.8 consistent 4340 235.4 1562 4221
8 4 55.9 consistent 6642 240.5 1563 4221
16 8 55.9 consistent 6672 233.5 1468 3869
32 |16 55.9 consistent 6680 231.8 1442 3762
8 6 32.8 consistent 4340 235.4 1562 4221
16 |12 82.8 consistent 4357 228.4 1466 3869
32 |24 82.8 consistent 4362 226.6 1441 3762
8| 6 82.8 lumped | 4333 231.6 1486 3884
16 |12 82.8 lunped 4356 227.5 1447 3776
32 | 24 82.8 lumped 4362 226.4 1436 3738

15
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DISCUSSION OF RESULTS

; Use of NASTRAN to implement the finite element pressure formulation

| by using structural elements to serve, by analogy, as fluid elements

3 proceeded smoothly. Altering NASTRAN's standard procedures to assemble

the mass and stiffness matrices for the combined fluid-structure problem

and to insert the lumped boundary matrix presented no problem. The extensional
rod element was modified to compute the consistent boundary matrix without
difficulty.

Table 1 shows that, for modes 2, 4, and 6, the analytic solution for
fluid regions with finite radii converges quickly to the solution for an
infinite fluid region. But for mode 0 no such convergence is indicated. The
same behavior is evident for the finite element solution for meshes with
Ne = 8, for which the vacuum boundary condition (p=0) was imposed at the
successively larger radii, 55.9 cm, 68.1 om, and 82.8 cm. These trials show
that extending the radius of the fluid region from 2.2 to 2.7 structural radii
! changes the frequencies of modes 4 and 6 by less than one percent. Extending
2 the fluid radius from 2.7 to 3.3 structural radii changes the frequency of

mode 2 by less than one percent.

Effects of element size on accuracy were studied by successively refinin;
the finite element grid for fluid regions with radii 55.9 cm and 82.8 cm.
The frequencies for these trials are given in Table 1 and the percent of
deviation from the analytic solutions for the same radii are given in Table 2.

b b o A s bk

PV TR R -

ST S Sy P

AT

In all cases the error is seen to decrease approximately as the square of the
element size.

Accuracy of the frequencies relative to the frequencies obtained apalyticaily
and their convergence tc the frequency of the infinite fluid region also depends
on the mode of vibration. The higher mode required a more refined finite
element grid than the lower modes to achieve equal accuracy. On the other hand,
the frequencies of higher modes converge at smaller radii than do those of the
lower modes. Although mode 0 does not converge at all as the radius increases,
the finite element method gives an accurate estimate of the analytic frequency

L VR VP NP P VRS S POR U R SNV

o e v

x ) for equal radii.
: For this problem, the lumped formulation of the fluid-structure boundary
interaction produced results more accurate than the consistent fornulation. Also,
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TABLE 2 - PERCENTAGE ERRORS FOR FINITE FLUID NUMERICAL RESULTS

v |y [outer Radius FE Modes
] T {cm) Formulation 0 2 4 6
4 55.9 consistent 0.6 4.0 9.1 13.3
16 8 55.9 consistent 0.1 1.0 2.4 3.9
32 116 55.9 consistent 0.0 0.3 0.6 1.0
8 6 82.8 consistent 0.6 4.1 9.1 13.3
16 | 12 82.8 consistent 0.2 1.0 2.4 3.9
32 | 24 82.8 consistent 6.0 0.2 0.6 1.0
8 6 82.8 Tumped 0.7 2.4 3.7 4.3
16 12 82.8 lumped 0.1 0.6 1.0 1.4
32 124 82.8 lumped 0.0 0.1 0.3 0.4

the accuracy remained higher as the mode increased. These results suggest ‘

that a lumped formulation should be considered for a fluid-structure inter-
action problem unless the complexity of the problem precludes its use.
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